Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(2): e2302280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812035

RESUMEN

Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.


Asunto(s)
Vesículas Extracelulares , Comunicación Celular
2.
J Craniomaxillofac Surg ; 51(7-8): 433-440, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37550118

RESUMEN

The aim of this study is to provide criteria for the choice of the surgical approach for extraction of high inverted mesiodens. The operation statistics, life quality of postoperative patients, and the operative injury/recovery were compared and analysed. The laser Doppler blood flowmetry, laser speckle contrast imaging, and electric pulp testing were explored to detect the postoperative pulp and gingiva blood supply of adjacent teeth. For the clinician's primary concerns, the surgical time, the volume of osteotomy, and the amount of bleeding in the labial approach group (The p values are 0.0001, <0.0001, and 0.0131, respectively.) and intranasal approach group (All p values were <0.0001.) were significantly less than that in the palatal approach group. However, from the patient's perspective, the postoperative swelling in the labial approach was far more than that in the intranasal approach group (p =0.0044), with unsurprisingly lower satisfaction (p <0.0001). There were no significant differences in pulp and gingival blood supply of adjacent teeth and jaw development. Trauma was manageable in all patients. Within the limitations of the study it seems that extraction of mesiodens by the intranasal approach achieves a delicate balance between reducing surgical trauma and optimizing postoperative recovery.


Asunto(s)
Incisivo , Diente Supernumerario , Humanos , Estudios Prospectivos , Pulpa Dental/irrigación sanguínea , Encía , Flujometría por Láser-Doppler
3.
J Nanobiotechnology ; 21(1): 200, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344839

RESUMEN

The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.


Asunto(s)
COVID-19 , Vacunas , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Pandemias/prevención & control , Prueba de COVID-19
4.
J Extracell Vesicles ; 11(12): e12288, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450704

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , COVID-19/terapia , Prueba de COVID-19 , Inmunidad Adaptativa
5.
J Control Release ; 340: 136-148, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695524

RESUMEN

Extracellular vesicles (EVs) are vehicles of intercellular communication that are released from various cell types under physiological and pathological conditions, with differing effects on the body. Under physiological conditions, EVs mediate cell-to-cell and intertissue communication and participate in maintaining homeostasis. Certain EV types have emerged as biological therapeutic agents in various fields, such as cell-free regenerative medicine, drug delivery and immunotherapy. However, the low yield of EVs is a bottleneck in the large-scale implementation of these therapies. Conversely, more EVs in the microenvironment in other circumstances, such as tumor metastasis, viral particle transmission, and the propagation of neurodegenerative disease, can exacerbate the situation, and the inhibition of EV secretion may delay the progression of these diseases. Therefore, the promotion and inhibition of EV release is a new and promising field because of its great research potential and wide application prospects. We first review the methods and therapeutic opportunities for the regulation of EV release based on the mechanism of EV biogenesis and consider the side effects and challenges.


Asunto(s)
Vesículas Extracelulares , Enfermedades Neurodegenerativas , Comunicación Celular , Sistemas de Liberación de Medicamentos , Humanos
6.
J Sep Sci ; 44(24): 4343-4367, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687589

RESUMEN

Ligustri Lucidi Fructus is a dried and mature fruit of Ligustrum lucidum Ait., which has the effects of nourishing liver and kidney. Herein, an accurate and sensitive method was established for the separation and identification of the absorbed constituents and metabolites of Ligustri Lucidi Fructus in rat plasma based on ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry. A total of 73 prototype constituents and 148 metabolites were identified or characterized in administered plasma, and the possible metabolic pathways of constituents mainly involved hydroxylation, sulfation, demethylation, and glucuronidation. Besides, the network pharmacology was further investigated to illuminate its potential mechanism of treatment for liver injury by the biological targets regulating related pathways. Network pharmacological analysis showed that target components through 399 targets regulate 220 pathways. The docking results showed that 36 key target components were closely related to liver injury. Overall, the study clearly presented the metabolic processes of Ligustri Lucidi Fructus and gave a comprehensive metabolic profile of Ligustri Lucidi Fructus in vivo first. Combining with network pharmacology and molecular docking discovered potential drug targets and disclose the biological processes of Ligustri Lucidi Fructus, which will be a viable step toward uncovering the secret mask of study for traditional Chinese medicine.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ligustrum/química , Farmacología en Red , Extractos Vegetales/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Masculino , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley
7.
Ther Clin Risk Manag ; 17: 235-247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790564

RESUMEN

The extraction of impacted lower third molars (ILTM) is one of the most common procedures in oral-maxillofacial surgery. Being adjacent to lower second molars, most impacted lower third molars often lead to distal periodontal defects of adjacent second molars. Several symptoms may occur after extraction, such as periodontal pocket formation, loss of attachment, alveolar bone loss and even looseness of second molar resulting in extraction. The distal periodontal defects of second molars are affected by many factors, including periodontal conditions, age, impacted type of third molars, and intraoperative operations. At present, several studies have suggested that dentists can reduce the risk of periodontal defects of the second molar after ILTM extraction through preoperative evaluation, reasonable selection of flap design, extraction instruments and suture type, and necessary postoperative interventions. This review summarizes the research progress on the influence factors, interventions methods and some limitations of distal periodontal defects of adjacent second molar after extraction of impacted mandibular third molars, with the aim of opening up future directions for studying effects of ILTM extraction on periodontal tissue of the adjacent second molar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...